Community

Displaying 10 of 78 results for "Jingjing Cai" clear search

Nicholas Magliocca Member since: Mon, Jan 31, 2011 at 03:35 PM

Ph.D. in Geography and Environmental Systems, Master's in Environmental Management (M.E.M.), B.S. in Environmental Systems

My research focuses on building a systemic understanding of coupled human-natural systems. In particular, I am interested in understanding how patterns of land-use and land-cover change emerge from human alterations of natural processes and the resulting feedbacks. Study systems of interest include those undergoing agricultural to urban conversion, typically known as urban sprawl, and those in which protective measures, such as wildfire suppression or flood/storm impact controls, can lead to long-term instability.

Dynamic agent- and process-based simulation models are my primary tools for studying human and natural systems, respectively. My past work includes the creation of dynamic, process-based simulation models of the wildland fires along the urban-wildland interface (UWI), and artificial dune construction to protect coastal development along a barrier island coastline. My current research involves the testing, refinement, extension of an economic agent-based model of coupled housing and land markets (CHALMS), and a new project developing a generalized agent-based model of land-use change to explore local human-environmental interactions globally.

Janice Ser Huay Lee Member since: Tue, Oct 14, 2014 at 02:48 PM

PhD in Environmental Systems Science

Modeling land use change from smallholder agricultural intensification

Agricultural expansion in the rural tropics brings much needed economic and social development in developing countries. On the other hand, agricultural development can result in the clearing of biologically-diverse and carbon-rich forests. To achieve both development and conservation objectives, many government policies and initiatives support agricultural intensification, especially in smallholdings, as a way to increase crop production without expanding farmlands. However, little is understood regarding how different smallholders might respond to such investments for yield intensification. It is also unclear what factors might influence a smallholder’s land-use decision making process. In this proposed research, I will use a bottom-up approach to evaluate whether investments in yield intensification for smallholder farmers would really translate to sustainable land use in Indonesia. I will do so by combining socioeconomic and GIS data in an agent-based model (Land-Use Dynamic Simulator multi-agent simulation model). The outputs of my research will provide decision makers with new and contextualized information to assist them in designing agricultural policies to suit varying socioeconomic, geographic and environmental contexts.

koene Member since: Sun, Mar 25, 2012 at 04:06 PM

PhD, MSc

My core research interest is to understand how humans and other living creature perceive and behave; respond and act upon their environment and how this dynamic interplay shapes us into who we are. In recognition of the broad scope of this question I am a strong believer in the need for inter- and multi-disciplinary approaches and have worked at research groups in a wide range of departments and institutions, including university departments of Physics as well as Psychology, a bio-medical research lab, a robotics research laboratory and most recently the RIKEN Brain Science Institute. Though my work has primarily taken the form of computational neuroscience I have also performed psychophysical experiments with healthy human subjects, been involved in neural imaging experiments and contributed towards the development of a humanoid robot.

Based on the philosophy of ‘understanding through creating’ I believe that bio-mimetic and biologically inspired computational and robotic engineering can teach us not only how to build more flexible and robust tools but also how actual living creatures deal with their environment. I am therefore a strong believer in the fertile information exchange between scientific as well as engineering research disciplines.

Kenneth Aiello Member since: Thu, Jan 23, 2020 at 04:14 PM Full Member

Ph.D., Biology and Society, Arizona State University, B.S., Sociology, Arizona State University,, B.S., Biology, Arizona State University

Kenneth D. Aiello is a postdoctoral research scholar with the Global BioSocial Complexity Initiative at ASU. Kenneth’s research contributes to cross disciplinary conversations on how historical developments in biological, social, and cultural knowledge systems are governed by processes that transform the structure, dynamics, and function of complex systems. Applying computational historical analysis and epistemology to question what scientific knowledge is and how we can analyze changes in knowledge, he uses text analysis, social network analysis, and machine learning to measure similarities and differences between the knowledge claims of individual agents and groups. His work builds on how to assess contested knowledge claims and measure the evolution of knowledge across complex systems and multiple dimensions of scale. This approach also engages in dynamic new debates about global and local structures of knowledge shaped by technological innovation within microbiology related to public policy, shrinking resources given to biomedical ideas as opposed to “translation”, and the ethics of scientific discovery. Using interdisciplinary methods for understanding historical content and context rich narratives contributes to understanding new domains and major transitions in science and provides a richer understanding of how knowledge emerges.

Forrest Stonedahl Member since: Fri, Jan 20, 2012 at 08:34 PM Full Member

Masters in Computer Science at Northwestern University, PhD in Computer Science at Northwestern University

My primary research interests lie at the intersection of two fields: evolutionary computation and multi-agent systems. I am specifically interested in how evolutionary search algorithms can be used to help people understand and analyze agent-based models of complex systems (e.g., flocking birds, traffic jams, or how information diffuses across social networks). My secondary research interests broadly span the areas of artificial life, multi-agent robotics, cognitive/learning science, design of multi-agent modeling environments. I enjoy interdisciplinary research, and in pursuit of the aforementioned topics, I have been involved in application areas from archeology to zoology, from linguistics to marketing, and from urban growth patterns to materials science. I am also very interested in creative approaches to computer science and complex systems education, and have published work on the use of multi-agent simulation as a vehicle for introducing students to computer science.

It is my philosophy that theoretical research should be inspired by real-world problems, and conversely, that theoretical results should inform and enhance practice in the field. Accordingly, I view tool building as a vital practice that is complementary to theoretical and methodological research. Throughout my own work I have contributed to the research community by developing several practical software tools, including BehaviorSearch (http://www.behaviorsearch.org/)

Doug Salt Member since: Wed, Dec 06, 2017 at 06:03 PM Full Member

PhD, BSc (Hons)

I obtained a PhD in database information theory from the University of the West of Scotland in 2015, and have been a researcher at the James Hutton Institute ever since. My areas of research are agent-based-modelling (ABM), data curation, effective use of infrastructure as a service (IaaS), and semantic information representation and extraction using formal structures such as computerised ontologies, relational databases and any other structured or semi-structured data representations. I primarily deal with social and agricultural models and was originally taken on in the role of knowledge engineer in order to create the ontology for the H2020 project, Green Lifestyles, Alternative Models and Upscaling Regional Sustainability (GLAMURS). Subsequent work, for the Scottish Government has involved the use of IaaS, more commonly referred to as the “cloud” to create rapidly deployable and cheap alternatives to in-house high-performance computing for both ABM and Geographical Information System models.

It is the mixture of skills and interests involving modelling, data organisation and computing infrastructure expertise that I believe will be highly apposite in the duties associated with being a member of the CoMSES executive. Moreover, prior to joining academia, I spent about 25 years as a developer in commercial IT, in the agricultural, entertainment and banking sectors, and feel that such practical experience can only benefit the CoMSES network.

David Earnest Member since: Sat, Mar 13, 2010 at 03:46 PM Full Member

Ph.D. in political science (2004), M.A. in security policy studies (1994)

Two themes unite my research: a commitment to methodological creativity and innovation as expressed in my work with computational social sciences, and an interest in the political economy of “globalization,” particularly its implications for the ontological claims of international relations theory.

I have demonstrated how the methods of computational social sciences can model bargaining and social choice problems for which traditional game theory has found only indeterminate and multiple equilibria. My June 2008 article in International Studies Quarterly (“Coordination in Large Numbers,” vol. 52, no. 2) illustrates that, contrary to the expectation of collective action theory, large groups may enjoy informational advantages that allow players with incomplete information to solve difficult three-choice coordination games. I extend this analysis in my 2009 paper at the International Studies Association annual convention, in which I apply ideas from evolutionary game theory to model learning processes among players faced with coordination and commitment problems. Currently I am extending this research to include social network theory as a means of modeling explicitly the patterns of interaction in large-n (i.e. greater than two) player coordination and cooperation games. I argue in my paper at the 2009 American Political Science Association annual convention that computational social science—the synthesis of agent-based modeling, social network analysis and evolutionary game theory—empowers scholars to analyze a broad range of previously indeterminate bargaining problems. I also argue this synthesis gives researchers purchase on two of the central debates in international political economy scholarship. By modeling explicitly processes of preference formation, computational social science moves beyond the rational actor model and endogenizes the processes of learning that constructivists have identified as essential to understanding change in the international system. This focus on the micro foundations of international political economy in turn allows researchers to understand how social structural features emerge and constrain actor choices. Computational social science thus allows IPE to formalize and generalize our understandings of mutual constitution and systemic change, an observation that explains the paradoxical interest of constructivists like Ian Lustick and Matthew Hoffmann in the formal methods of computational social science. Currently I am writing a manuscript that develops these ideas and applies them to several challenges of globalization: developing institutions to manage common pool resources; reforming capital adequacy standards for banks; and understanding cascading failures in global networks.

While computational social science increasingly informs my research, I have also contributed to debates about the epistemological claims of computational social science. My chapter with James N. Rosenau in Complexity in World Politics (ed. by Neil E. Harrison, SUNY Press 2006) argues that agent-based modeling suffers from underdeveloped and hidden epistemological and ontological commitments. On a more light-hearted note, my article in PS: Political Science and Politics (“Clocks, Not Dartboards,” vol. 39, no. 3, July 2006) discusses problems with pseudo-random number generators and illustrates how they can surprise unsuspecting teachers and researchers.

Xiaotian Wang Member since: Fri, Mar 28, 2014 at 02:23 AM

PHD of Engineering in Modeling and Simulation, Proficiency in Agent-based Modeling

Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.

Mario Javier Rodriguez Ureta Member since: Wed, Aug 20, 2025 at 04:12 PM

BSc. in Economics, Graduate Diploma in Data Science, MSc in Data Science

Mario Ureta holds a BSc in Economics from Birkbeck, University of London, a Graduate Diploma in Data Science from the London School of Economics, and an MSc in Data Science and Analytics from Brunel University London. He is currently a PhD student in Computing Science at Birkbeck, University of London. His research focuses on the economic study of individual preferences and decision-making, and on the use of agent-based models as a bridge between economic theory and computational experimentation. Through economic simulation, his work examines how heterogeneous preferences, social interaction, and firm behaviour jointly shape aggregate market outcomes, including non-linear dynamics and tipping points.

My research interests centre on the study of individual preferences in economics and on understanding how preferences evolve through interaction, learning, and social context. I am particularly interested in how seemingly weak or latent preferences—such as attitudes toward environmental attributes, prices, or social norms—can become amplified through feedback mechanisms and generate non-linear aggregate outcomes. A core methodological focus of my work is the use of agent-based modelling and economic simulation as a bridge between economic theory and experimentation. By treating agent-based models as computational laboratories, I explore how heterogeneous preferences, habit formation, peer influence, and firm behaviour interact dynamically, allowing theoretical mechanisms to be tested, stress-tested, and compared under controlled but flexible conditions that are difficult to achieve using purely analytical or empirical approaches.

Erin Stringfellow Member since: Mon, Mar 21, 2016 at 05:27 PM

MSW

Ms. Stringfellow is a PhD candidate whose goal is to identify ways to build and leverage the natural support systems of people who are experiencing problems related to their illicit drug use. Her current interest is in how these support systems operate in small towns with limited formal resources for quitting. To that end, she recently began conducting in-depth qualitative interviews for her dissertation in a semi-rural county in eastern Missouri. These interviews will be used to build an agent-based model, a type of dynamic simulation modeling that can be used to represent heterogeneous actors with multiple goals and perceptions. As a research assistant and dissertation fellow with the Social System Design Lab, she has also been trained in system dynamics, an aggregate-level dynamic simulation modeling method.

Prior to joining the PhD program, she worked as a research associate at the Boston Health Care for the Homeless Program from 2008-2012. BHCHP is an exemplar model of providing patient-centered care for people who have experienced homelessness. There, she gained significant experience in managing research projects, collecting qualitative and quantitative data, and program evaluation. She earned her MSW from the University of Michigan in 2007, with a focus on policy and evaluation in community and social systems, and a BA in sociology in 2005, also at the University of Michigan. Ms. Stringfellow was born and raised in a small town in Michigan.

Displaying 10 of 78 results for "Jingjing Cai" clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept