Displaying 10 of 571 results for "Lee-Ann Sutherland" clear search
Kenneth D. Aiello is a postdoctoral research scholar with the Global BioSocial Complexity Initiative at ASU. Kenneth’s research contributes to cross disciplinary conversations on how historical developments in biological, social, and cultural knowledge systems are governed by processes that transform the structure, dynamics, and function of complex systems. Applying computational historical analysis and epistemology to question what scientific knowledge is and how we can analyze changes in knowledge, he uses text analysis, social network analysis, and machine learning to measure similarities and differences between the knowledge claims of individual agents and groups. His work builds on how to assess contested knowledge claims and measure the evolution of knowledge across complex systems and multiple dimensions of scale. This approach also engages in dynamic new debates about global and local structures of knowledge shaped by technological innovation within microbiology related to public policy, shrinking resources given to biomedical ideas as opposed to “translation”, and the ethics of scientific discovery. Using interdisciplinary methods for understanding historical content and context rich narratives contributes to understanding new domains and major transitions in science and provides a richer understanding of how knowledge emerges.
Methods and Tools for the Microsimulation and Forecasting of Household Expenditure
social acceptability and fuel treatments
I am a developer for CoMSES Net as part of the Global Biosocial Complexity Initiative at Arizona State University. I work on improving model reuse, accessibility and discoverability through the development of the comses.net
website and the CoMSES bibliographic database (catalog.comses.net
). I also provide data analysis and software development advice on coupling models, version control, dependency management and data analysis to researchers and modelers.
My interests include model componentization, statistics, data analysis and improving model development and resuability practices.
The goal of my research program is to improve our understanding about highly integrated natural and human processes. Within the context of Land-System Science, I seek to understand how natural and human systems interact through feedback mechanisms and affect land management choices among humans and ecosystem (e.g., carbon storage) and biophysical processes (e.g., erosion) in natural systems. One component of this program involves finding novel methods for data collection (e.g., unmanned aerial vehicles) that can be used to calibrate and validate models of natural systems at the resolution of decision makers. Another component of this program involves the design and construction of agent-based models to formalize our understanding of human decisions and their interaction with their environment in computer code. The most exciting, and remaining part, is coupling these two components together so that we may not only quantify the impact of representing their coupling, but more importantly to assess the impacts of changing climate, technology, and policy on human well-being, patterns of land use and land management, and ecological and biophysical aspects of our environment.
To achieve this overarching goal, my students and I conduct fieldwork that involves the use of state-of-the-art unmanned aerial vehicles (UAVs) in combination with ground-based light detection and ranging (LiDAR) equipment, RTK global positioning system (GPS) receivers, weather and soil sensors, and a host of different types of manual measurements. We bring these data together to make methodological advancements and benchmark novel equipment to justify its use in the calibration and validation of models of natural and human processes. By conducting fieldwork at high spatial resolutions (e.g., parcel level) we are able to couple our representation of natural system processes at the scale at which human actors make decisions and improve our understanding about how they react to changes and affect our environment.
land use; land management; agricultural systems; ecosystem function; carbon; remote sensing; field measurements; unmanned aerial vehicle; human decision-making; erosion, hydrological, and agent-based modelling
S.R. Aurora, also known as Mai P. Trinh, is an Assistant Professor of Management at The University of Texas Rio Grande Valley. Her interdisciplinary work intersects leadership, complex systems science, education, technology, and inclusion. Her research harnesses technology to cultivate future leaders and helps people thrive in our volatile, uncertain, complex, and ambiguous (VUCA) high-tech world, aligning with four United Nations’ sustainable development goals: Quality education (#4), Gender equality (#5), Decent work and economic growth (#8), and Reduced inequalities (#10). She has published in top-tiered peer-reviewed journals such as The Leadership Quarterly and The Academy of Management Learning and Education and received multiple national and international awards for her research, teaching, and mentoring. Dr. Aurora earned her doctoral degree in Organizational Behavior from the Weatherhead School of Management at Case Western Reserve University in 2016.
Leader development, leading complex systems, agent-based modeling, experiential learning, innovations in online education
I studied Molecular Biology and Genetics at Istanbul Technical University. During my undergraduate studies I became interested in the field of Ecology and Evolution and did internships on animal behaviour in Switzerland and Ireland. I then went on to pursue a 2-year research Master’s in Evolutionary Biology (MEME) funded by the European Union. I worked on projects using computer simulations to investigate evolution of social complexity and human cooperation. I also did behavioural economics experiments on how children learn social norms by copying others. After my Master’s, I pursued my dream of doing fieldwork and investigating human societies. I did my PhD at UCL, researching cultural evolution and behavioural adaptations in Pygmy hunter-gatherers in the Congo. During my PhD, I was part of an inter-disciplinary Hunter-Gatherer Resilience team funded by the Leverhulme Trust. I obtained a postdoctoral research fellowship from British Academy after my PhD. I am currently working as a British Academy research fellow and lecturer in Evolutionary Anthropology and Evolutionary Medicine at UCL.
As publically funded science has become increasingly complex, the policy and management literature has begun to focus more attention on how science is structured and organized. My research interests reside at the nexus of science and technology policy, organizational theory, and complexity theory—I am interested in how the management and organization of S&T research influences the implementation of policies and the emergence of organizational strategies and innovation. Although my research involves the use of multiple qualitative and quantitative methods, I rely heavily on agent based modeling and system dynamics approaches in addressing my research questions.
Sudhira’s research has been primarily on urban land-use and land cover change studies exploring their consequences on environmental sustainability and understanding their inter-relationship with transportation. His broader research addresses the evolution and growth of towns and cities invoking complexity sciences, understanding planning practices and studying the effect of varied governance structures.
Displaying 10 of 571 results for "Lee-Ann Sutherland" clear search