Displaying 10 of 570 results for "Lee-Ann Sutherland" clear search
I am strongly interested in ecological modeling and complex system and truly enjoyed working with a variety of tools to uncover patterns in empirical data and explore their ecological and evolutionary consequences. My primary research is to conduct research in the field of ‘ecological complexity’, including the development of appropriate descriptive measure to quantify the structural, spatial and temporal complexity of ecosystem and the identification of the mechanism that generate this complexity, through modeling and field studies.
Currently investigated is how biological characteristics of invasive species (dispersal strategies and demographic processes) interact with abiotic variables and resource distribution to determine establishment success and spread in a complex heterogeneous environment (Individual based modelling integrated with GIS technologies).
I am part of the Participatory Systems initiative at the Delft University of Technology. I’m currently working on my PhD project, which concerns the role of local information and stories to empower and engage citizens in their neighbourhoods. I study and use playful and creative approaches to enable the participation of children, youngsters, and adults in my research. My research interests are in research through design, citizen engagement, empowerment, and social design.
I research the role of local information and stories to increase citizen engagement in urban environments. Through workshops with citizens (children, youngsters and adults), I identify which approaches are suitable to increase engagement through local stories and storytelling. My thesis works towards a toolkit and framework which showcases possible neighbourhoud interventions, presents design guidelines, and discusses trade-offs. The research builds on workshops and projects done in The Hague and Rotterdam.
I am a lowly civil servant moonlighting as a PhD student interested in urban informatics, Smart Cities, artificial intelligence/machine learning, all-things geospatial and temporal, advanced technologies, agent-based modeling, and social complexity… and enthusiastically trying to find a combination thereof to form a disseration. Oh… and I would like to win the lottery.
Research focuses on the coupled dynamics of human and natural systems, specifically in the context of forest dynamics. I utilize a variety of modeling and analysis techniques, including agent-based modeling, cellular automata, machine learning and various spatial statistics and GIS-related methods. I am currently involved in projects that investigate the anthropogenic and biological drivers behind native and invasive forest pathogens and insects.
Hotelling Rule and ABM
Nonrenewable resources and ABM
Optimal extraction of natural resources and ABM
My research focuses on applied marine ecology and environmental management, particularly with coastal fish assemblages. Research interests include fish ecology, environmental monitoring and assessment methodology and individual-based models.
I currently work on an agent-based model on energy-efficient renovation decisions.
Matteo Richiardi is an internationally recognised scholar in micro-simulation modelling (this includes dynamic microsimulations and agent-based modelling). His work on micro-simulations involves both methodological research on estimation and validation techniques, and applications to the analysis of distributional outcomes, the functioning of the labour market and welfare systems. He is Chief Editor of the International Journal of Microsimulation. Examples of his work are the two recent books “Elements of Agent-based Computational Economics”, published by Cambridge University Press (2016), and “The political economy of work security and flexibility: Italy in comparative perspective”, published by Policy Press (2012).
I’m modelling LandUse and Cover Changes, Biodiversity impact and Biological corridors for Surrogate Species shared by US and Mexico.
Displaying 10 of 570 results for "Lee-Ann Sutherland" clear search