Displaying 10 of 221 results for "Jan Buurma" clear search
Sedar is a PhD student at the University of Leeds, department of Geography. He graduated in Computer Science at King’s College London 2018. From a very early stage of his degree, he focused on artificial intelligence planning implementations on drones in a search and rescue domain, and this was his first formal attempt to study artificial intelligence. He participated in summer school at Boğaziçi University in Istanbul working on programming techniques to reduce execution time. During his final year, he concentrated on how argumentation theory with natural language processing can be used to optimise political influence. In the midst of completing his degree, he applied to Professor Alison Heppenstall’s research proposal focusing on data analytics and society, a joint endeavour with the Alan Turing Institute and the Economic and Social Research Council. From 2018 - 2023 he will be working on his PhD at the Alan Turing Institute and Leeds Institute for Data Analytics.
Sedar will be focusing on data analytics and smart cities, developing a programming library to try simulate how policies can impact a small world of autonomous intelligent agents to try deduce positive or negative impact in the long run. If the impact is positive and this is conveyed collectively taking into consideration the agent’s health, happiness and other social characteristics then the policy can be considered. Furthermore, he will work on agent based modelling to solve and provide faster solutions to economic and social elements of society, establishing applied and theoretical answers. Some other interests are:
1987-1989: assistant professor at the Neuchâtel University (Switzerland)
1990-2001: full professor at the Neuchâtel University (Switzerland): artificial intelligence & software engineering
2001- : senior researcher at CIRAD in the unit “Gestion des Ressources et Environnement” (GREEN) and from 2021 “Savoirs ENvironnement Sociétés” (UMR SENS)
Former professor at the University of Neuchatel in Switzerland and now senior researcher at CIRAD in France, I am doing research on artificial intelligence since 1984. Having begun with logic programming, I naturally applied logics and its extensions (i.e. modal logics of various sorts) to specify agent behaviour. Since 1987, I moved both to embedded intelligence (using mobile robots) and multi-agent systems applied, in particular, to job-shop scheduling and complex system simulation and design. Since 2001, I exclusively work on modelling and simulation of socio-ecosystems in a multidisciplinary team on renewable resources management (GREEN). I am focusing on modelling complex systems in a multi-disciplinary (economist, agronomist, sociologists, geographers, etc.) and multi-actor (stakeholders, decision makers) setting. It includes:
- representing multiple points of view at various scales and levels on a complex socio-ecosystem, using ontologies and contexts
- representing the dynamics of such systems in a variety of formalisms (differential equations, automata, rule-based systems, cognitive models, etc.)
- mapping these representations into a simulation formalism (an extension of DEVS) for running experiments and prospective analysis.
This research is instantiated within a modelling and simulation platform called MIMOSA (http://mimosa.sourceforge.net). The current applications are the assessment of the sustainability of management transfer to local communities of the renewable ressources and the dynamics of agro-biodidversity through networked exchanges.
My research focuses on building a systemic understanding of coupled human-natural systems. In particular, I am interested in understanding how patterns of land-use and land-cover change emerge from human alterations of natural processes and the resulting feedbacks. Study systems of interest include those undergoing agricultural to urban conversion, typically known as urban sprawl, and those in which protective measures, such as wildfire suppression or flood/storm impact controls, can lead to long-term instability.
Dynamic agent- and process-based simulation models are my primary tools for studying human and natural systems, respectively. My past work includes the creation of dynamic, process-based simulation models of the wildland fires along the urban-wildland interface (UWI), and artificial dune construction to protect coastal development along a barrier island coastline. My current research involves the testing, refinement, extension of an economic agent-based model of coupled housing and land markets (CHALMS), and a new project developing a generalized agent-based model of land-use change to explore local human-environmental interactions globally.
I have a strong background in building and incorporating agent-based simulations for learning. Throughout my graduate career, I have worked at the Center for Connected Learning and Computer Based Modeling (CCL), developing modeling and simulation tools for learning. In particular, we develop NetLogo, the gold standard agent-based modeling environment for learners around the world. In my dissertation work, I marry biology and computer science to teach the emergent principles of ant colonies foraging for food and expanding. The work builds on more than a decade of experience in ABM. I now work at the Center for the Science and the Schools as an Assistant Professor. We delivered a curriculum to teach about COVID-19, where I incorporated ABMs into the curriculum.
You can keep up with my work at my webpage: https://kitcmartin.com
Studying the negative externalities of networks, and the ways in which those negatives feedback and support the continuities.
Shibari is a form of interaction between people and besides an exotic spectacle, it is a series of strange but pleasant kinesthetic sensations. Intimate is not equally depraved, but means that during the shibari ropes process, the participants in the session show emotions that are not customary to experience in public: tears, laughter and groans of pleasure.
IRPact - An integrated agent based modeling approach in innovation diffusion
Goal: The goal of IRPact is to develop a flexible and generic innovation-diffusion ABM (agent-based modelling) framework, based on requirements derived from a literature analysis. The aim of IRPact is to allow for modeling a large number of application contexts and questions of interest.
It provides a formal model (framework) as well as a software implementation in order to assist modelers with a basic infrastructure for their own research.
Conceptually it is thought to be part of the IRPsim (https://irpsim.uni-leipzig.de), with the vision to bring together rational approaches and cognitive modeling in an integrated approach within the context of sustainable energy markets.
I am an anthropological archaeologist with broad interests in hunter-gatherers, lithic technology, human evolution, and complex systems theory. I am particularly interested in understanding processes of long term social, evolutionary, and adaptational change among hunter-gatherers, specifically by using approaches that combine archaeological data, ethnographic data, and computational modeling.
He is an experienced Lecturer with a demonstrated history of working in the education management industry. He was skilled in Agent-based Modeling and Simulation, Competency Assessing and Fundamental Supply Chain Management. Strong research background and analyst with a Master’s degree focused in Logistics and Supply Chain Management from Institut Teknologi Sepuluh Nopember Surabaya and Certified Supply Chain Analyst from ISCEA International.
My research focused on pricing strategy and its impact on Supply Chain (SC) using the Agent-Based Modeling and Simulation (ABMS) approach. Currently, I’m working on an ABMS model to analyze the impact of SC Coordination on SC performance when intelligent retailers may offer price discounts based on the market’s states using Q-learning algorithm.
Modeling land use change from smallholder agricultural intensification
Agricultural expansion in the rural tropics brings much needed economic and social development in developing countries. On the other hand, agricultural development can result in the clearing of biologically-diverse and carbon-rich forests. To achieve both development and conservation objectives, many government policies and initiatives support agricultural intensification, especially in smallholdings, as a way to increase crop production without expanding farmlands. However, little is understood regarding how different smallholders might respond to such investments for yield intensification. It is also unclear what factors might influence a smallholder’s land-use decision making process. In this proposed research, I will use a bottom-up approach to evaluate whether investments in yield intensification for smallholder farmers would really translate to sustainable land use in Indonesia. I will do so by combining socioeconomic and GIS data in an agent-based model (Land-Use Dynamic Simulator multi-agent simulation model). The outputs of my research will provide decision makers with new and contextualized information to assist them in designing agricultural policies to suit varying socioeconomic, geographic and environmental contexts.
Displaying 10 of 221 results for "Jan Buurma" clear search