Displaying 9 of 129 results for "Daniel J Singer" clear search
Dr. Chairi Kiourt is a research associate with the ATHENA - Research and Innovation Centre in Information, Communication and Knowledge Technologies - Xanthi’s Division, multimedia department since 2014. Also, as of December 2017, heis PostDoctoral researcher with the Hellenic Open University, School of Science and Technology, and as of 2018, visiting Lecturer at the Department of Informatics Engineering, Eastern Macedonia and Thrace Institute of Technology, Greece.
In 2003, he received his BSc degree in Electrical Engineering from the Electrical Engineering Department of the Eastern Macedonia and Thrace Institute of Technology, Greece. He also received an M.Sc. in System Engineering and Management in the specialty area: A. Information and Communication Systems Management from the Democritus University of Thrace, Greece. In 2017, received his PhD in Artificial Intelligence and Software Engineering from the Hellenic Open University. He has participated in several national and European research programs and co- authored to the writing of several scientific publications in international peer-reviewed journals and conferences with judges in the fields of collective artificial intelligence, multi-agent systems, reinforcement learning agents, virtual worlds, virtual museums and gamification.
Game playing multi-agent systems, reinforcement learning, colelctive artificial intelligence, distributed computing systems, virtual worlds, gamification
Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.
To tackle the scientific challenges proposed by landscape dynamics and cooperation processes, I have developed a research methodology based on field work and companion modelling (ComMod) combined with the formalisation of the observed processes and agents based models.
This approach offers the possibility to understand : spatial, social, cultural and / or economic conditions that take place on territories, and to provide prospective scenarios.
These methods have been applied in various contexts: steep slope vineyards landscapes (2011), water resource management cooperation (2015), vegetation cover in dry climate (2017). The established research networks are still active through sustained collaborations and activities.
My technical expertise grew and evolved through investment in several workgroups: MAPS Team (Modelling Applied to Space Phenomena), OSGeo (president of the OSGeo’s French chapter between 2013 and 2016, member of the OSGeo-international chapter since 2015), various initiatives around modelling, exploration and sensibility analysis of spatial patterns behaviours, and more generally in Free Software communities.
I am interested in the socio-environmental conditions for the emergence of cooperation and mutual aid in social systems and mainly with regard to renewable resources. I consider in this context that Commons are a spatial manifestation of mutual aid.
From a technical point of view, I am very interested in the questions of model exploration (HPC), which led me to integrate the OpenMole community and to contribute to discussions about heuristic exploration.
I am an assistant professor in the Department of Computer Science at the Hamedan University of Technology, Hamedan, IRAN. I have completed my Ph.D. in Futures Studies (foresight) as an interdisciplinary field, an intersection of social sciences and engineering. My
background comes from computer science. For my Ph.D., I decided to pursue my education in Futures Studies; the field I thought I could apply engineering principles such as requirements engineering, analytical skills, design, modeling, planning, and, test engineering to shape the
desired futures. In PhD, I started the complex systems research field and agent-based modeling with NetLogo. In addition to several publications of papers, I published a book on complex systems titled “Futures Studies in Complex Systems” which was awarded as the book of the year by the Iranian Foresight Association.
Since May 2021, I started a research collaboration with TISSS Lab at the Johannes Gutenberg University Mainz as a project coordinator, the German Research Centre for AI, Human-Centered Multimedia, and the Centre for Research in Social Simulation. The project title is “AI for Assessment” and its objective is to understand the status quo and the future options of AI-based social assessment in public service provisions to help in the creation of improved AI technology for social welfare systems.
On the executive side, I have also various experiences, including head of the department, deputy of the Technology Incubator Center, director of university’s research affairs, and head of the International Scientific Cooperation Office.
Complex Systems, Social Modeling and Simulation
Engineering the Futures
Dr. Lilian Alessa, University of Idaho President’s Professor of Resilient Landscapes in the Landscape Architecture program, is also Co-Director of the University of Idaho Center for Resilient Communities. She conducts extensive research on human adaptation to environmental change through resilient design at landscape scales. Much of her work is funded by the National Science Foundation, including projects awarded the Arctic Observing Network, Intersections of Food, Energy and Water Systems (INFEWS) and the Dynamics of Coupled Natural Human Systems programs. Canadian-born and raised, Alessa received her degrees from the University of British Columbia. She also uses her expertise in social-ecological and technological systems science to develop ways to improve domestic resource security for community well-being, particularly through the incorporation of place-based knowledge. Her work through the Department of Homeland Security’s Center of Excellence, the Arctic Domain Awareness Center, involves developing social-technological methods to monitor and respond to critical environmental changes. Lil is a member of the National Science Foundation’s Advisory Committee for Environmental Research and Education and is on the Science, Technology and Education Advisory Committee for the National Ecological Observing Network (NEON). Professor Alessa also teaches a university landscape architecture capstone course: Resilient Landscapes with Professor Andrew Kliskey. Professor Alessa’s collaborative grant activity with Professor Andrew Kliskey, since coming to the university in 2013, exceeds 7 million USD to date. She has authored over a 100 publications and reports and has led the development of 2 federal climate resilience toolbox assessments, the Arctic Water Resources Vulnerability Index (AWRVI) and the Arctic Adaptation Exchange Portal (AAEP).
I discovered at the same time Agent-Based Modeling method and Companion Modelling approach during my master degrees (engeenering and artificial intelligence and decision) internship at CIRAD in 2005 and 2006 where I had the opportunity to participate as a modeller to a ComMod process (Farolfi et al., 2010).
Then, during my PhD in computer Science applied to Modeling and Simulation, I learned the Theory of Modeling and Simulation and the Discrete EVent System specification formalism and proposed a conceptual, formal and operational framework to evaluate simulation models based on the way models are used instead of their ability to reproduce the target system behavior (Bonté et al., 2012). Applied to the surveillance of Epidemics, this work was rather theoritical but very educative and structuring to formulate my further models and research questions about modeling and simulation.
From 2011 to 2013, I worked on viability theory applied to forest management at the Compex System Lab of Irstea (now Inrae) and learned about the interest of agregated models for analytical results (Bonté et al, 2012; Mathias et al, 2015).
Since 2013, I’m working for Inrae at the joint The Joint Research Unit “Water Management, Actors, Territories” (UMR G-EAU) where I’m involved in highly engaging interdisciplinary researches such as:
- The Multi-plateforme International Summer School about Agent Based Modelling and Simulation (MISSABMS)
- The development of the CORMAS (COmmon Pool Resources Multi-Agents Systems) agent-based modeling and simulation Platform (Bommel et al., 2019)
- Impacts of the adaptation to global changes using computerised serious games (Bonté et al., 2019; Bonté et al. , 2021)
- The use of experimentation to study social behaviors (Bonté et al. 2019b)
- The impact of information systems in SES trajectories (Paget et al., 2019a)
- Adaptation and transformations of traditional water management and infrastructures systems (Idda et al., 2017)
- Situational multi-agent approaches for collective irrigation (Richard et al., 2019)
- Combining psyhcological and economical experiments to study relations bewteen common pool resources situations, economical behaviours and psychological attitudes.
My research is about modelling and simulation of complex systems. My work is to use, and participate to the development of, integrative tools at the formal level (based on the Discrete EVent System Specification (DEVS) formalism), at the conceptual level (based on integrative paradigms of different forms such as Multi-Agents Systems paradigm (MAS), SES framework or viability theory), and at the level of the use of modelling and simulation for collective decision making (based on the Companion Modelling approach (ComMod)). Since 2013 and my integration in the G-EAU mixt research units, my object of studies were focused on multi-scale social and ecological systems, applied to water resource management and adaptation of territories to global change and I added experimentation to my research interest, developping methods combining agent-based model and human subjects actions.
I studied Mathematics at Oxford (1979-1983) then did youth work in inner city areas for the Educational Charity. After teaching in Grenada in the West Indies we came back to the UK, where the first job I could get was in a 6th form college (ages 16-18). They sent me to do post16 PCGE, which was so boring that I also started a part-time PhD. The PhD was started in 1992 and was on the meaning and definition of the idea of “complexity”, which I had been pondering for a few years. Given the growth of the field of complexity from that time, I had great fun reading almost anything in the library but I did finally finish it in 1999. Fortunately I got a job at the Centre for Policy Modelling (CfPM) in 1994 with its founder and direction, Scott Moss. We were doing agent-based social simulation then, but did not know it was called this and did not meet other such simulators for a few years. With Scott Moss we built the CfPM into one of the leading research centres in agent-based social simulation in the world. I became director of the CfPM just before Scott retired, and later became Professor of Social Simulation in 2013. For more about me see http://bruce.edmonds.name or http://cfpm.org.
All aspects of social simulation including: techniques, tools, applications, philosophy, methodology and interesting examples. Understanding complex social systems. Context-dependency and how it affects interaction and cognition. Complexity and how this impacts upon simulation modelling. Social aspects of cognition - or to put it another way - the social embedding of intelligence. Simulating how science works. Integrating qualitative evidence better into ABMs. And everything else.
I am Professor in Computational Resilience Economics at the University of Twente (the Netherlands), which I joined in 2010. In September 2017 I also joined University of Technology Sydney (Australia) as Professor of Computational Economic Modeling working with spatial simulation models to study socioeconomic impacts of disasters and emergence of resilience across scales. I was honored to be elected as a Member of the De Jonge Akademie of the Royal Dutch Academy of Sciences (DJA/ KNAW in 2016) and of Social Sciences Council (SWR/KNAW in 2017). From 2009 to 2015 I have been working part-time as an economist at Deltares – the leading Dutch knowledge institute in the field of water management – specializing in economics of climate change, with focus on floods and droughts management.
I am interested in the feedbacks between policies and aggregated outcomes of individual decisions in the context of spatial and environmental policy-making. The issue of social interactions and information diffusion through networks to affect economic behavior is highly relevant here. My research line focuses on exploring how behavioral changes at micro level may lead to critical transitions (tipping points/regime shifts) on macro level in complex adaptive human-environment systems in application to climate change economics. I use agent-based modelling (ABM) combined with social science methods of behavioral data collection on individual decisions and social networks. This research line has been distinguished by the NWO VENI and ERC Starting grants and the Early Career Excellence award of the International Environmental Modeling Society (iEMSs). In 2018 I was invited to serve as the Associate Editor of the Environmental Modelling & Software journal, where I have been a regular Member of the Editorial Board since 2013.
Klaus G. Troitzsch was a full professor of computer applications in the social sciences at the University of Koblenz-Landau since 1986 until he officially retired in 2012 (but continues his academic activities). He took his first degree as a political scientist. After eight years in active politics in Hamburg and after having taken his PhD, he returned to academia, first as a senior researcher in an election research project at the University of Koblenz-Landau, from 1986 as full professor of computer applications in the social sciences. His main interests in teaching and research are social science methodology and, especially, modelling and simulation in the social sciences.
Among his early research projects there is the MIMOSE project which developed a declarative functional simulation language and tool for micro and multilevel simulation between 1986 and 1992. Several EU funded projects were devoted to social simulation and policy modelling, the most recent from 2012 to 2015 combining data/text mining and agent-based simulation to analyse the global dynamics of extortion racket systems.
He authored, co-authored, and co-edited several books and many articles in social simulation, and he organised or co-organised a number of national and international conferences in this field. Over nearly three decades he advised and/or supervised more than 55 PhD theses, most of them in the field of social simulation. He offered annual summer and spring courses in social simulation between 1997 and 2009; more recent courses of this kind are now being organised by the European Social Simulation Assiciation and held at different places all over Europe (mostly with his contributions).
Computational social science, structuralist theory reconstruction
Displaying 9 of 129 results for "Daniel J Singer" clear search