Computational Model Library

Displaying 10 of 1172 results for "Ian M Hamilton" clear search

Local scale mobility, namely foraging, leads to global population dispersal. Agents acquire information about their environment in two ways, one individual and one social. See also http://www.openabm.org/model/3846/

This is a re-implementation of a the NetLogo model Maze (ROOP, 2006).

This re-implementation makes use of the Q-Learning NetLogo Extension to implement the Q-Learning, which is done only with NetLogo native code in the original implementation.

TRAINING AND TURNOVER

Kehinde Salau | Published Tuesday, December 16, 2008 | Last modified Saturday, April 27, 2013

The purpose of the model presented by Glance et al is to study the ‘contribute vs. free-ride’ dilemma present in organizations.

Atomic Radius

Kit Martin Ashlyn Karan | Published Friday, January 16, 2015

Due to teacher requests to represent changes in atomic radius, we developed a visualization of the first 36 elements in Netlogo

BorealFireSIM Model

Liliana Perez Jonathan Gaudreau | Published Thursday, December 13, 2018

BorealFireSIM is a cellular automaton based model that serves to identify future fire patterns in the boreal forest of Quebec, Canada. The model simulates yearly fire seasons and adjusts decadal climate variables based on two future carbon pathways (RCP45 (low emissions) and RCP85 (business as usual)). The BorealFireSIM model simulates future fire patterns up to the year 2100.

This is a stylized model based on Alonso’s model investigating the relationship between urban sprawl and income segregation.

Peer reviewed MicroAnts 2.5

Diogo Alves | Published Thursday, October 16, 2025

MicroAnts 2.5 is a general-purpose agent-based model designed as a flexible workhorse for simulating ecological and evolutionary dynamics in artificial populations, as well as, potentially, the emergence of political institutions and economic regimes. It builds on and extends Stephen Wright’s original MicroAnts 2.0 by introducing configurable predators, inequality tracking, and other options.
Ant agents are of two tyes/casts and controlled by 16-bit chromosomes encoding traits such as vision, movement, mating thresholds, sensing, and combat strength. Predators (anteaters) operate in static, random, or targeted predatory modes. Ants reproduce, mutate, cooperate, fight, and die based on their traits and interactions. Environmental pressures (poison and predators) and social dynamics (sharing, mating, combat) drive emergent behavior across red and black ant populations.
The model supports insertion of custom agents at runtime, configurable mutation/inversion rates, and exports detailed statistics, including inequality metrics (e.g., Gini coefficients), trait frequencies, predator kills, and lineage data. Intended for rapid testing and educational experimentation, MicroAnts 2.5 serves as a modular base for more complex ecological and social simulations.

The model proposes a translation of some Luhmann’s concepts (social sub-system, perturbation, dissipation, social communication and power) into a model using a stylized spatial-society as a metaphor of a Luhmann’s social subsystem. The model has been used to improve the social theory understanding and to evaluate the effect of different parameterization in the global stabilization and individual/social power distribution.

This agent-based model was built as part of a replication effort of Jeness et al.’s work (linked below). The model simulates an MSM sexual activity network for the purpose of modeling the effects of respectively PrEP and ART on HIV prevention. The purpose of the model is to explore the differences between differerent interpretations of the NIH Indication Guidelines for PrEP.

Social Nets Emergence Model

Di Wang | Published Wednesday, March 21, 2012 | Last modified Saturday, April 27, 2013

This model simulates the interactions and dynamic trust changes between people which results in social group emergence and evolution.

Displaying 10 of 1172 results for "Ian M Hamilton" clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept